运维管理    |    人才招聘    |    内部办公

新型智慧城市顶层设计经验分享

  • 时间:2018-01-12 18:16:27 编辑:Sissi 来源:www.jpsycn.com 浏览:





  新型智慧城市(smart city)这一概念发端于20世纪80年代的信息城市(information city),经历了20世纪90年代的智能城市(intelligent city)与数字城市(digital city),在2000年后逐步演化为新型智慧城市。2009年IBM公司首次提出了新型智慧城市愿景,使得新型智慧城市理念与实践在全球范围内迅速传播。


  与新型智慧城市同时备受关注的是信息与通信技术(ICT:Information and Communications Technology)领域的大数据(Big Data)概念。作为与传统数据相区别的“大”数据,它的数据量已经从太字节(TB,240)级上升到拍字节(PB,250)级,甚至是泽字节(ZB,270)级。据统计,如今人们每两天生产的数据量就与人类文明发展至2003年产生的总数据量相当,而迄今为止人类所积累的数据量的90%都来自过去两年。


  那么,大数据与新型智慧城市这两个经常被相提并论的概念之间存在怎样的关联关系?在具体的新型智慧城市规划中,大数据又扮演着什么角色,具有怎样的发展前景?本文将着重探讨上述问题。


  1、大数据与新型智慧城市:演进与关联


  1.1 新型智慧城市


  出版于1972年的《后工业社会的来临》(The Coming of PostIndustrial Society)一书将1970年作为工业社会与后工业社会的分水岭,划分的依据即在于ICT的发展及对日常生活的广泛渗透,同时ICT也逐渐成为社会经济发展的关键,因此后工业社会通常也被称为信息社会。受这一思想影响,20世纪80年代的城市研究提出了信息城市概念。到20世纪90年代初,长期从事城市模型研究的迈克尔·巴蒂(Michael Batty)提出了智能城市概念,核心思想在于强调互联网技术对提升信息交流和增强城市竞争力的重要地位。新千年后,对等互联网络技术(P2P:peer-to-peer)、移动智能终端和物联网对城市生产、生活的影响日益深刻,在ICT技术支持下,城市功能更加复杂,城市运行日益高效,城市各个子系统的交叉复合也越来越深入。但是将ICT技术广泛应用于城市发展并非仅仅为了提升城市运行效率,其最终目标应是城市经济的可持续发展、城市生活品质的提升以及城市社会经济活动公平性的促进。基于这些认识,新型智慧城市概念应运而生。


  然而,新型智慧城市概念也受到了许多质疑,主要原因在于新型智慧城市内涵宽泛,不仅包括城市技术系统,也包括城市管理系统,还包括城市人文系统,同时其目标指向也涉及经济、政治、人文等多个维度,为新型智慧城市的确切定义造成了极大困难。目前学术界对于新型智慧城市尚未给出广为认可的统一定义,仅有一个包含六个子系统的新型智慧城市框架被较多使用,这六个子系统分别是:智慧经济(smart economy)、智慧市民(smart people)、智慧管理(smart governance)、智慧移动(smart mobility)、智慧环境(smart environment)与智慧生活(smart living)。而产业界对新型智慧城市的认识可总结为利用新一代的软、硬件和联络技术赋予ICT系统以实时的真实世界数据,与先进的科学分析技术相结合,协助人们进行更加理性的决策,从而提高生产生活水平。

智慧城市


  1.2 大数据


  如今,人们每天发送10万条推特,谷歌每分钟执行200万次搜索,全世界每天产生2.5艾字节(EB,260)数据,截至2013年互联网数据量已达到1 000艾字节……这些数字共同构成了所谓“大数据”。不同机构和学者为大数据提出过多种不同定义,其中较被广泛认可的是描述大数据与传统数据主要差别的“3V”特征——大容量、高速度与多样性。大容量体现为其数据量往往达到艾字节或泽字节级别,很难以传统数据处理方式在合理时间内完成分析;高速度体现为数据生成过程的流动速度,也就是大数据具有实时性;而多样性则主要表现在大数据类型和来源的多样。这些特点使得能够有效管理大数据、普遍适用的数据组织与处理技术成为关键。


  1.3 演进与关联


  可以看到,新型智慧城市概念的演进与ICT的日趋发展密不可分。概括而言,大数据与新型智慧城市分别代表了20世纪以来ICT进步的两个方面——大数据概念的提出和发展主要来自于ICT领域的发展,而新型智慧城市概念的提出和发展则是ICT影响下人类社会的思想观念与建设实践演进的反映,两者之间具有紧密的关联关系。新型智慧城市的发展必须依托于ICT技术的发展,而城市生产、生活的日趋复杂也为ICT领域提出了新的机遇和挑战。一方面,市民对基于ICT的各类服务需求激增,为ICT的进一步发展提供了市场支持;另一方面,用户在享受服务的同时,也生成了巨量潜存巨大社会、商业、科学价值的信息,也就是大数据。新型智慧城市的规划与建设,需要有充分的技术与条件处理城市运行过程中产生的大数据,如城市交通系统产生的实时交通信息、城市经济系统产生的商业活动信息等,特别是城市管理层(城市政府)对新型智慧城市进行智慧管理需要建立一整套大数据管理系统,不仅涉及数据的收集、存储、分析方法,还涉及来自不同行业、不同类别数据的整合问题。这一系列城市功能脱离大数据技术都是无法实现的(表1)。

国际经验研究丨大数据与智慧城市之间存在怎样的关联关系?

  表1 ICT数据管理方法与新型智慧城市的演进与关联


  2 、大数据时代的新型智慧城市规划实践:国际案例与经验


  由上文可以看出,新型智慧城市这一概念来自于产业界,并由政府和产业界推动实践,而学术界虽然也已开展相关研究,但尚未成为新型智慧城市建设的主要推动力,且部分研究与应用实践尚有一定差距。参考新型智慧城市六大系统的分析框架,分别梳理大数据相关技术在各个系统的应用。需要指出的是,六大系统中的智慧经济侧重产业发展,智慧市民侧重教育、个人发展与社会公平等,与大数据相关性较弱,故不作探讨。


  2.1 大数据基础设施


  大数据的获取与传输依赖于覆盖广泛、速度快捷的互联网络,因此互联网基础设施的铺盖与升级是新型智慧城市建设的必要环节。早在1993年,美国率先提出了国家信息基础设施(NII)计划,并随后提出了全球信息基础设施(GII)计划。至今,已有大量国家或地方政府提出高速或超高速宽带网络建设计划,同时,随着智能移动终端的普及,免费无线网络也成为网络基础设施的建设重点。


  在上述“硬件”基础设施之外,“软件”基础设施——开放数据同样是新型智慧城市建设的重要基础。开放数据与众包开发已成为国外新型智慧城市建设的必需环节。


  2.2 智慧管理


  由城市运行所产生的交通、环境、市政、商业等各领域数据量是巨大的,这些数据经过合理的分析挖掘可产生大量传统数据所不能反映的城市运行信息。目前与智慧管理相关的大数据来源主要包括由遍布全市的摄像头收集的视频影像,由各类传感器收集的环境等方面信息,由各类终端收集的刷卡信息,由市民通过手机应用或社交网站贡献的相关信息等。其应用方式主要体现在三个领域。一是实时监控与突发事件处理。二是市政服务。三是公众参与,大数据使人们得以构建反映城市建成环境实时变化的三维可视化系统,这类系统可作为公众参与的平台。


  2.3 智慧出行


  交通流的合理规划与疏导是几乎所有城市长期面临的问题,而大数据的广泛性与实时性则为解决这类问题提供了新的可能。目前大数据在智慧出行领域的应用主要体现在两方面。一是交通流量实时监控。二是交通信息实时提供。


  2.4 智慧环境


  在新型智慧城市概念出现之前,生态城市、低碳城市等概念就已被广泛接受,也是新千年后全球城市发展的关注重点。目前大数据在智慧环境领域的应用主要体现在两方面。一是能源使用管理,安装在电网系统中的传感器可实时收集用户的能耗信息,并按时段调配能源供给或在电力峰值不同的建筑物之间进行电力融通,提高能源使用效率。二是环境质量监控,如哥本哈根利用安装在自行车轮上的传感器收集空气质量信息,巴塞罗那利用安装在路灯上的传感器收集噪声、污染信息等。


  2.5 智慧生活


  虽然新型智慧城市涉及大量技术内容,但其核心价值仍在于为市民提供更高质量的生活(Quality of Life),这也是几乎所有国外新型智慧城市建设项目所不断强调的。目前大数据在此领域的应用主要体现在生活服务方面,通过云计算等技术对实时信息进行分析并据此为市民提供更多生活服务实时信息。智慧社区概念,通过智能网络系统将社区的服务、信息和人群等各类资源相结合,将物理空间的社区转化为一个更加紧密联系的社区。但也可以看到,在医疗、教育这两个智慧生活的重要方面,大数据尚未获得较多实质性的应用。


  大数据概念的提出是ICT技术,例如移动智能终端、物联网等在当前社会生产、生活中广泛应用和渗透的发展结果。新型智慧城市建设着眼于提升城市可持续发展能力和竞争力,并以提高城市生活品质为根本目标,其规划与建设需要依托于整合ICT的城市基础设施规划与建设,在运行和管理层面,新型智慧城市则需要大数据相关技术的支持。然而,大数据本身的三个特点——大容量、高速度和多样性,则分别给大数据的存储、处理及系统整合提出了巨大挑战。目前来看,大数据相关技术在新型智慧城市规划与建设中的应用取得了相当多的进展,但仍处于起步探索阶段。一方面,其应用范围较多局限在新型智慧城市各个子系统,较少有整合多个系统的应用案例,但也可以看到,整合多个城市系统数据的数据平台也在构建当中。另一方面,大数据在各个子系统的应用方式虽然具体内容不同,但大多可归纳为实时信息的收集监控、分析与推送,随着长期大数据的积累,其应用方式有待获得更多拓展,如我国的北京城市实验室(BCL)正在利用多年积累的北京公交和轨道交通刷卡数据研究北京的城市贫困问题。